用“小说阁”微信小程序追更新速度快!
永久免费无需下载,还能切换源站追更
进入微信小程序
第一百五十八章 你们的研究是错误,但你们的研究太重要了!?

哥德巴赫猜想出现在1742年。

当时哥德巴赫给欧拉的信中提出了以下猜想,任一大于2的整数都可写成三个质数之和。

哥德巴赫自己无法证明它,就写信请教赫赫有名的大数学家欧拉帮忙证明。

然而一直到死,欧拉也无法证明。

不过欧拉还是进行了很多研究的,他在给哥德巴赫猜想中的回信中提出了另一个等价的版本,也就是现在流传最广的版本,即‘任一大于2的偶数都可写成两个质数之和’。

正因为如此,才会有‘1 1’的说法。

1 1,说的是两个质数之和。

陈景润证明的‘1 2’,则是‘任一充分大的偶数都可以表示成二个素数的和,或是一个素数和一个半素数的和’。

他所利用的方法就是最经典的‘筛法’。

历史上,所有哥德巴赫猜想相关证明进展,利用的都是筛法,筛法,也就是筛选法,理解起来很容易。

首先把自然数按次序排列起来,从数字1开始,1不是质数,也不是合数,要划去。

第二个数2是质数留下来,而把2后面所有能被2整除的数都划去。

2后面第一个没划去的数是3,把3留下,再把3后面所有能被3整除的数都划去。

3后面第一个没划去的数是5,把5留下,再把5后面所有能被5整除的数都划去……

这样一直做下去,就会把不超过n的全部合数都筛掉,留下的就是不超过n的全部质数。

这个方法听起来很简单,实际上,因为筛选过程是无穷尽的,就必须要用到数学分析方法,涉及到的是组合数学问题。

组合数学,一定程度上就可以为离散数学。

广义上来说,组合数字的分析就是离散数学,但实际应用来说,狭义的组合数学是离散数学除去图论、代数结构数理逻辑后剩下的部分。

离散数学,就是王浩的‘拿手好戏’。

所以对于陈景润的研究论文,王浩很容易就读懂了,了解了其中的方法逻辑。

同时也做了一个判断就像是数学界普遍的看法,陈景润先生已经把筛法运用到了极致,也只完成了‘1 2’的证明。

换句话说,这条路是走不通的。

就好像是对于π的确切数值的研究,哪怕是用计算机计算几百亿位,也不可能得到精准的π数值,π,依旧只能用符号表示,而不是一个确切的数字。

换句话来说,单纯用计算的方法,不可能解出一个无理数,而用‘筛法’也不可能证明‘1 1’问题。

王浩放下了手里的论文,不由得感慨一句,“哥德巴赫猜想,要证明好难啊!”

他发出感慨,另一个原因则是,看了好几篇相关论文,结果任务灵感值,就只增长了可怜的1点。 本章未完,请点击下一页继续阅读! 第2页/共5页

👉丨点击进入微信小程序“小说阁”免费阅读丨👈

→如无内容,点击此处重加载内容←
多次加载无内容,请点页面中间弹出菜单换源阅读!



从大学讲师到首席院士
换源
目录
设置
夜间
日间
报错
章节目录
换源阅读
章节报错

点击弹出菜单

提示
微信小程序“小说阁”可换源免费阅读,点击跳转微信小程序阅读~