如果不能研究出质数对节点出现的规律,高次质点函数就无法完全吃透。
那么怎么去联系质量点构造问题呢?
质数分布……
质量点……
王浩开始认真思考着两者的关系。
……
斯坦福大学计算机团队发现了第二组质数对节点,也让高次质点函数的研究,取得了第二轮国际舆论热度。
很多人都在谈论高次质点函数。
一些顶尖学者站出来,表示‘高次质点函数是数学的重大突破’。
着名的数学家安德鲁怀尔斯,年纪已经接近七十岁了,他已经离开了普林斯顿高等研究院,回到了伦敦乡下小镇养老。
在面对高次质点函数的问题,安德鲁怀尔斯也站了出来,接受采访时说道,“高次质点函数是不确定的,现阶段还真是个猜想,但其中可能蕴含着质数的规律。”
“即便如此,它的出现也对于数学研究有非常重大的意义。”
“如果做个形容……即便是十个菲尔兹加在一起,也不足以诠释它在数学基础研究中的作用。”
这个评价确实非常高,但也受到了其他数学家们的认可。
同时,安德鲁怀尔斯还提出了两个问题,“现在好多人都说起王氏数学猜想,实际上,有关高次质点函数的研究,可以拆分成两个问题。”
“一个问题是,证明单独的质数对节点,对于所有质数是有效的。很多人参与了质数对节的验算,我们能确定一千以内的质数,代入都可以求出对应的质数,但一千以上呢?或者超大质数呢?”
“这是必须要证明的。”
“我们可以把这个问题,作为王氏猜想的第一个问题。”
“王氏猜想的第二个问题是,质数对节点的数量,就像是孪生素数,是有有限个,还是无穷多个?”
“这也是需要严谨证明的。”
“我个人也对于高次质点函数做了研究,并发现了一个不知道是否是问题的问题。”安德鲁怀尔斯提出了自己的问题,“高次质点函数,是否存在‘非全质数点的全整数节点’?”
“最少到目前,我还没有发现任何一个……”
安德鲁怀尔斯接受采访,总结了高次质点函数的两个问题,他个人又提出了一个新的问题。
当报道被发布出去以后,他所提出的三个问题被很多学的认可。
之后好多的报道进行引用,就把王氏猜想分为了三个部分,作为王氏猜想的第一问题、第二问题以及第三问题。
更多的学者意识到,高次质点函数蕴含着很多可挖掘的方向。
他们可以以此进行研究突破。
同时,一些学者思考着‘王氏猜想’,都感觉有些怪怪的。
‘王氏猜想’,影响力如此巨大,被认为是指明了质数研究的方向,质数对节点的研究,还快速取得了突破。
本章未完,请点击下一页继续阅读! 第4页/共5页