袁海涛还是不可思议。
“这个数值偏高了。”赵奕摇头说道,“我计算的结果是十一个点左右。”
“百分之十一也不低了!”袁海涛开口做出点评。
周庆没有去研究为什么会出现数值差距,而是激动的说道,“百分之十都很高了。最重要的是,燃烧室的效能真正有了明显的提升,就能带来更高的动力。”
“对!”
袁海涛也狠狠的点头。
千万不要小看百分之十的最高效能提升,只是单纯计算最高效能的影响,百分之十的效能提升,代表的可不是让飞机最高速度百分之十,而是百分之二十、三十,甚至更高,因为推动力和最高速度,是呈现指数增长的。
当然了。
实际上,影响飞机速度的因素很多,燃烧室的效能只是其中一个方面,其他部件配合的不要,燃烧室的效能再高也没有意义。
这也是昆仑发动机组,不太重视燃烧室效能的原因,他们当然知道效能越高越好,但高效能不一定代表高动力,也许还会带来其他问题。
比如,涡轮叶片的强度压力。
当周庆、袁海涛冷静下来以后,立刻和赵奕讨论起了这个问题,燃烧室效能高不一定是好事,效能高也就意味着温度提升,而承受高温、高压的涡轮叶片,不一定能承受的住。
袁海涛提起了涡轮机的问题,赵奕倒是一点都不意外,就算他们不提涡轮机,他也准备下一步去完善涡轮机的构造。
涡轮机的构造其实是个小事,对于赵奕没有什么难度可言,几个叶片的构建,怎么样设计才能最合理,《联络率》能给出非常完善的方案,就算不用有完善的方案,《监察律》也可以用来给原本的方案进行修正。
但是,袁海涛、周庆提到的问题才是关键,就是涡轮叶片的耐高温以及承受强度问题。
航空发动机的涡轮机,原理和汽车的涡轮增压发动机原理很类似,就是利用排气、流体冲击叶轮转动来产生动力。
不管是高速飞行带来的空气流动,还是燃烧室作用下产生的高温、高压,目的都是为了增加排气速度,来让涡轮机实现高强度运转。
航空发动机的涡轮机,最关键的技术就是叶片材料,涡轮叶片,也是航空发动机的三大高压部件之一。
涡轮叶片会提供巨大的动力,代价是承受远超过其金属融化温度的高温以及过万牛顿的离心拉伸应力,也就是涡轮叶片要能承受高温与高压,就必须要尽可能的耐高温、拥有高强度。
“在发动机涡轮和风扇设计水平相同的前提下,涡前的温度每提高100开,推力增加百分之十五。”
“这就是我们受限制的地方!”
袁海涛认真解释道,“高温是涡轮叶片的第一道坎,温度动辄就是一、两千度,甚至更高,而高效的叶片不能设计成实心,需要在一个叶片上,打上几百上千的个冷气通道孔。”
本章未完,请点击下一页继续阅读! 第2页/共4页